Функции старой древней и новой коры

Функции старой древней и новой коры

Так вот, площадь коры головного мозга одного полушария человека составляет около 800 — 2200 кв. см., толщина — 1,5?5 мм. Большая часть коры (2/3) залегает в глубине борозд и не видна снаружи. Благодаря такой организации мозга в процессе эволюции была получена возможность значительно увеличить площадь коры при ограниченном объеме черепа. Общее количество нейронов в коре может достигать 10 — 15 млрд.

Сама же по себе кора больших полушарий неоднородна, поэтому в соответствии с филогенезом (по происхождению) различают древнюю кору (палеокортекс), старую кору (архикортекс), промежуточную(или среднюю) кору (мезокортекс) и новую кору (неокортекс).

Древняя кора, (или палеокортекс) — это наиболее просто устроина кора больших полушарий, которая содержит 2?3 слоя нейронов. Согласно ряду известных ученых таких как Х. Фениш, Р. Д. Синельникову и Я. Р. Синельникову указывающих, что древняя кора соответствует области мозга, каторая развивается из грушевидной доли, а также компонентами древней коры являются обонятельный бугорок и окружающая его кора, включающая участок переднего продырявленного вещества. В состав древней коры входят следующие структурные образования такие как препириформная, периамигдалярная область коры, диагональная кора и обонятельный мозг, включающий обонятельные луковицы, обонятельный бугорок, прозрачную перегородку, ядра прозрачной перегородки и свод.

Согласно М. Г. Привесу и ряду некоторых ученых обонятельный мозг топографически делится на два отдела включая в себя ряд образований и извилин.

1. периферический отдел (или обонятельная доля) в состав которого входят образования лежащие на основании мозга:

обонятельный треугольник (внутри которого располагается обонятельный бугорок т. е. вершина обонятельного треугольника);

внутренние и боковые обонятельные извилины;

внутренние и боковые обонятельные полоски (волокна внутренней полоски заканчиваются в подмозолистом поле паратерминальной извилине, прозрачной перегородке и в переднем продырявленном веществе, а волокна боковой полоски заканчиваются в парагиппокампальной извилине);

переднее продырявленное пространство, или вещество;

диагональная полоска, или полоска Брока.

2. центральный отдел входят три извилины:

парагиппокампальная извилина (извилина гиппокампа, или извилина морского конька);

поясная извилина (включая ее переднею часть — крючек).

Старая и промежуточная кора

Старая кора (или архикортекс) — эта кора появляется позже древней коре и содержит в себе только три слоя нейронов. В ее состав входят гиппокамп (морской конек или аммонов рог) с его, основанием, зубчатая извилина и поясная извилина. кора головной мозг нейрон

Промежуточная кора (или мезокортекс) — представляющая собой пятислойные участи коры, отделяющие новую кору (неокортекс), от древней коры (палеокортекса) и старой коры (архикортекса) и из-за этого среднюю кору делят на две зоны:

  • 1. перипалеокортикальная;
  • 2. периархиокортикальная.

В состав мезокортекса согласно В. М. Покровскому и Г. А. Кураеву входят остарвковая, а также в энториальной области граничащая со старой корой парагиппокампальная извилина и предоснование гиппокампа.

В промежуточную кору по мнению Р. Д. Синельникова и Я. Р. Синельникова входят такие образования как нижний отдел остравковой доли, парагиппокампальная извилина и нижний отдел лимбической области коры. Но при этом необходимо понимать, что под лимбической областью понимают часть новой коры полушарий большого мозга, которая занимает поясную и парагиппокампальную извилины. Так же есть мнение, что промежуточная кора — это неполностью дифференцированная зона коры остравка (или висцеральная кора).

Из-за неоднозначности такой трактовки структур относящихся к древней и старой коре перевела к целесообразности использования объединенного понятия как архиопалеокортекс.

Структуры архиопалеокортекса имеют множественные связи, как между собой, так и сдругими образованиями мозга.

Новая кора (или неокортекс) — филогенетически, т. е. по своему происхождению — это наиболее позднее образование головного мозга. Из-за более позднего эволюционного возникновения и бурного развития новой коры головного мозга в ее организации сложных форм высшей нервной деятельности и высший иерархический ее уровень который вертикально согласованный с деятельностью центральной нервной системой составляя при этом наиболее особенности этого отдела мозга. Особенности новой коры вот уже много лет привлекает и продолжает удерживать внимание множество исследователей изучающих физиологию коры больших полушарий головного мозга. В настоящее время на смену старых представлениям о монопольном участии новой коры в формировании сложных форм поведения, в том числе условных рефлексов, пришло представление о ней, как высшем уровне таламокортикальных систем, функционирующих совместно с таламусом, лимбической и другими системами головного мозга. Новая кора участвует в психическом переживании внешнего мира — его восприятия и создания его образов, которые сохраняются на более или менее долгое время.

Особенность структуры новой коры является экранный принцип ее организации. Главное в этом принципе — организации нейронных систем заключается в геометрическом распределении проекций высших рецепторных полей на большой поверхности нейронального поля коры. Также для экранной организации характерная организация клеток и волокон, которые идут перпендикулярно поверхности или параллельно ей. Такая ориентация нейронов коры обеспечивает возможности для объединения нейронов в группировки.

Что касается клеточного состава в новой коре то он очень многообразен, величина нейронов примерно от 8?9 мкм до 150 мкм. Преобладающее большинство клеток относится к двум типам это — прирамидным и звездчатым. Также в новой коре имеются и веретенообразные нейроны.

Для того чтобы лучше рассмотреть особенности микроскопического строения коры больших полушарий необходимо обратиться к архитектонике. Под микроскопическим строением различают цитоархитектонику (клеточное строение) и миелоархитектонику (волокнистое строение коры). Начало изучения архитектоники коры больших полушарий относится к концу XVIII века, когда в 1782 г. Дженнари впервые обнаружил неоднородность строения коры в затылочных долях полушарий. В 1868 г. Мейнерт разделил поперечник коры полушарий на слои. В России первым исследователем коры былВ. А. Бец (1874), открывший крупные пирамидные нейроны в 5 слое коры в области предцентральной извилины, названные его именем. Но, есть и другое разделение коры головного мозга — так называемая карта полей Бродмана. В 1903 году германский анатом, физиолог, психолог и психиатр К. Бродман опубликовал описание пятидесяти двух цитоархитектонических полей, которые представляют собой участки коры головного мозга, различные по своему клеточному строению. Каждое такое поле отличается по величине, форме, расположению нервных клеток и нервных волокон и, конечно же, различные поля связаны с различными функциями головного мозга. На основании описания этих полей и была составлена карта 52 полей Бродман

Меню сайта

Древняя, старая и новая кора, их значение

Кора больших полушарий головного мозга, слой серого вещества толщиной 1—5 мм, покрывающий полушария большого мозга млекопитающих животных и человека. Эта часть головного мозга, развившаяся на поздних этапах эволюции животного мира, играет исключительно важную роль в осуществлении психической, или высшей нервной деятельности, хотя эта деятельность является результатом работы мозга как единого целого. Благодаря двусторонним связям с нижележащими отделами нервной системы, кора может участвовать в регуляции и координации всех функций организма. У человека кора составляет в среднем 44% от объёма всего полушария в целом. Её поверхность достигает 1468—1670 см2. Наиболее крупные подразделения территории коры — древняя (палеокортекс), старая (архикортекс), новая (неокортекс) и межуточная кора. Поверхность новой коры у человека занимает 95, 6%, старой 2, 2%, древней 0, 6%, межуточной 1, 6%. Древняя кора у человека и высших млекопитающих состоит из одного клеточного слоя, нечетко отделённого от нижележащих подкорковых ядер; старая кора полностью отделена от последних и представлена 2—3 слоями; новая кора состоит, как правило, из 6—7 слоев клеток; межуточные формации — переходные структуры между полями старой и новой коры, а также древней и новой коры — из 4—5 слоев клеток. Древняя и старая кора — играют решающую роль в регуляции вегетативных функций, инстинктивном поведении, возникновении эмоций в головном мозге. Также отвечает за врождённые поведенческие акты, обеспечивает гомеостаз. Новая кора (синонимы: неокортекс, изокортекс) (лат. neocortex) — новые области коры головного мозга, которые у низших млекопитающих только намечены, а у человека составляют основную часть коры. Новая кора располагается в верхнем слое полушарий мозга, имеет толщину 2-4 миллиметра и отвечает за высшие нервные функции — сенсорное восприятие, выполнение моторных команд, пространственную ориентацию, осознанное мышление и, у людей, речь. гей эскорт в Москве для самых требовательных.

Читайте также:  Бетосерк

2. Строение синапса. это место контактов 2ух клеток. они бывают центральными и переферическими. Синапс состоит из трех частей:пресинаптического окончания, синаптической щели и постсинаптической мембраны. Пресинаптическое окончание (синптическая бляшка)представляет собой расширенную часть терминали аксона. Синаптическая щель -это пространство между двумя контактирующими нейронами. Диаметр синаптической щели-10-20НМ. Третья часть синапса-постсинаптическая мембрана, которая расположена напротив пресинаптической мембраны Центральные-это контакты двух нейронов в центр. нервн. системе. Переферические-это нервно мышечный контакт или контакт нервной клетки с желюзой. Типичный синапс — аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической, образованной булавовидным расширением окончанием аксона передающей клетки и постсинаптической, представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае — участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую. Между обеими частями имеется синаптическая щель, края которой укреплены межклеточными контактами. Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели называется пресинаптической мембраной. Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной, в химических синапсах она рельефна и содержит многочисленные рецепторы. В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки, содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент, разрушающий этот медиатор. На постсинаптической и пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору ыделяют 5 типов синапса. Аксодендритный(основной) Аксосоматический(основной) Аксоаксональный Дендродендритный Сомасоматический. Синапс состоит из 3х элементов. Пресинаптическое окончание (окончание первого нейрона)-заполнено пузырьками (визикулами)и митохондриями. Синаптическая щель- это пространство между двумя контактирующими нейронами. Диаметр их составляет 10-20НМ. Постсинаптическая мембрана(второй нейрон) есть 3 вида синапсов химический (в чел. организме) электрический (улиткая) смешанный.

Рекомендуем к прочтению:

Терминация
Терминация трансляции наступает в том случае, когда в А-центр рибосомы попадает один из стоп-кодонов: UAG, UAA или UGA. Для стоп-кодонов нет соответствующих тРНК. Вместо этого к рибосоме присоединяются 2 белковых высвобождающих фактора RF .

Витамины, их роль в обмене веществ. Основные авитаминозы.
Витамины Витамины низкомолекулярные органические соединения различной химической природы, необходимые в небольших количествах для нормальной жизнедеятельности организма. Одна из основных функций витаминов заключается в том, что они являю .

Медь
В настоящее время известно около 25 белков, в состав которых входит медь. Они необходимы для регулирования процессов снабжения клеток кислородом, образования гемоглобина и созревания эритроцитов, синтеза белков соединительной ткани. Медь .

Кор а больш и х полуш а рий головн о го м о зга, слой серого вещества толщиной 1—5 мм, покрывающий полушария большого мозга млекопитающих животных и человека. Эта часть головного мозга, развившаяся на поздних этапах эволюции животного мира, играет исключительно важную роль в осуществлении психической, или высшей нервной деятельности, хотя эта деятельность является результатом работы мозга как единого целого. Благодаря двусторонним связям с нижележащими отделами нервной системы, кора может участвовать в регуляции и координации всех функций организма. У человека кора составляет в среднем 44% от объёма всего полушария в целом. Её поверхность достигает 1468—1670 см 2 .

Строение коры. Характерной особенностью строения коры является ориентированное, горизонтально-вертикальное распределение составляющих её нервных клеток по слоям и колонкам; таким образом, корковая структура отличается пространственно упорядоченным расположением функционирующих единиц и связей между ними (рис. 1). Пространство между телами и отростками нервных клеток коры заполнено нейроглией и сосудистой сетью (капиллярами). Нейроны коры подразделяются на 3 основных типа: пирамидные (80—90% всех клеток коры), звездчатые и веретенообразные. Основные функциональный элемент коры — афферентно-эфферентный (т. е. воспринимающий центростремительные и посылающий центробежные стимулы) длинноаксонный пирамидный нейрон (рис. 2). Звездчатые клетки отличаются слабым развитием дендритов и мощным развитием аксонов, которые не выходят за пределы поперечника коры и охватывают своими разветвлениями группы пирамидных клеток. Звездчатые клетки выполняют роль воспринимающих и синхронизирующих элементов, способных координировать (одновременно тормозить или возбуждать) пространственно близкие группы пирамидных нейронов. Корковый нейрон характеризуется сложным субмикроскопическим строением (см. Клетка). Различные по топографии участки коры отличаются плотностью расположения клеток, их величиной и другими характеристиками послойной и колончатой структуры. Все эти показатели определяют архитектуру коры, или её цитоархитектонику (см. рис. 1 и 3).

Наиболее крупные подразделения территории коры — древняя (палеокортекс), старая (архикортекс), новая (неокортекс) и межуточная кора. Поверхность новой коры у человека занимает 95,6%, старой 2,2%, древней 0,6%, межуточной 1,6%.

Если представить себе кору мозга в виде единого покрова (плаща), одевающего поверхность полушарий, то основная центральная часть его составит новая кора, в то время как древняя, старая и межуточная займут место на периферии, т. е. по краям этого плаща. Древняя кора у человека и высших млекопитающих состоит из одного клеточного слоя, нечетко отделённого от нижележащих подкорковых ядер; старая кора полностью отделена от последних и представлена 2—3 слоями; новая кора состоит, как правило, из 6—7 слоев клеток; межуточные формации — переходные структуры между полями старой и новой коры, а также древней и новой коры — из 4—5 слоев клеток. Неокортекс подразделяется на следующие области: прецентральную, постцентральную, височную, нижнетеменную, верхнетеменную, височно-теменно-затылочную, затылочную, островковую и лимбическую. В свою очередь, области подразделяются на подобласти и поля. Основной тип прямых и обратных связей новой коры — вертикальные пучки волокон, приносящие информацию из подкорковых структур к коре и посылающие её от коры в эти же подкорковые образования. Наряду с вертикальными связями имеются внутрикортикальные — горизонтальные — пучки ассоциативных волокон, проходящие на различных уровнях коры и в белом веществе под корой. Горизонтальные пучки наиболее характерны для I и III слоев коры, а в некоторых полях для V слоя. Горизонтальные пучки обеспечивают обмен информацией как между полями, расположенными на соседних извилинах, так и между отдалёнными участками коры (например, лобной и затылочной).

Читайте также:  Частые позывы к мочеиспусканию с зудом у женщин

Функциональные особенности коры обусловливаются упомянутым выше распределением нервных клеток и их связей по слоям и колонкам. На корковые нейроны возможна конвергенция (схождение) импульсов от различных органов чувств. Согласно современным представлениям, подобная конвергенция разнородных возбуждений — нейрофизиологический механизм интегративной деятельности головного мозга, т. е. анализа и синтеза ответной деятельности организма. Существенное значение имеет и то, что нейроны сведены в комплексы, по-видимому, реализующие результаты конвергенции возбуждений на отдельные нейроны. Одна из основных морфо-функциональных единиц коры — комплекс, называемый колонкой клеток, который проходит через все корковые слои и состоит из клеток, расположенных на одном перпендикуляре к поверхности коры. Клетки в колонке тесно связаны между собой и получают общую афферентную веточку из подкорки. Каждая колонка клеток отвечает за восприятие преимущественно одного вида чувствительности. Например, если в корковом конце кожного анализатора одна из колонок реагирует на прикосновение к коже, то другая — на движение конечности в суставе. В зрительном анализаторе функции восприятия зрительных образов также распределены по колонкам. Например, одна из колонок воспринимает движение предмета в горизонтальной плоскости, соседняя — в вертикальной и т. п.

Второй комплекс клеток новой коры — слой — ориентирован в горизонтальной плоскости. Полагают, что мелкоклеточные слои II и IV состоят в основном из воспринимающих элементов и являются «входами» в кору. Крупноклеточный слой V выход из коры в подкорку, а среднеклеточный слой III — ассоциативный, связывающий между собой различные корковые зоны (см. рис. 1).

Локализация функций в коре характеризуется динамичностью в силу того, что, с одной стороны, имеются строго локализованные и пространственно отграниченные зоны коры, связанные с восприятием информации от определенного органа чувств, а с другой — кора является единым аппаратом, в котором отдельные структуры тесно связаны и в случае необходимости могут взаимозаменяться (т. н. пластичность корковых функций). Кроме того, в каждый данный момент корковые структуры (нейроны, поля, области) могут образовывать согласованно действующие комплексы, состав которых изменяется в зависимости от специфических и неспецифических стимулов, определяющих распределение торможения и возбуждения в коре. Наконец, существует тесная взаимозависимость между функциональным состоянием корковых зон и деятельностью подкорковых структур. Территории коры резко различаются по своим функциям. Большая часть древней коры входит в систему обонятельного анализатора. Старая и межуточная кора, будучи тесно связанными с древней корой как системами связей, так и эволюционно, не имеют прямого отношения к обонянию. Они входят в состав системы, ведающей регуляцией вегетативных реакций и эмоциональных состояний организма (см. Ретикулярная формация, Лимбическая система). Новая кора — совокупность конечных звеньев различных воспринимающих (сенсорных) систем (корковых концов анализаторов).

Принято выделять в зоне того или иного анализатора проекционные, или первичные, и вторичные, поля, а также третичные поля, или ассоциативные зоны. Первичные поля получают информацию, опосредованную через наименьшее количество переключений в подкорке (в зрительном бугре, или таламусе, промежуточного мозга). На этих полях как бы спроецирована поверхность периферических рецепторов (рис. 4). В свете современных данных, проекционные зоны нельзя рассматривать как устройства, воспринимающие раздражения «точку в точку». В этих зонах происходит восприятие определенных параметров объектов, т. е. создаются (интегрируются) образы, поскольку данные участки мозга отвечают на определенные изменения объектов, на их форму, ориентацию, скорость движения и т. п.

Кроме того, локализация функций в первичных зонах многократно дублируется по механизму, напоминающему голографию, когда каждый самый маленький участок запоминающего устройства содержит сведения о всём объекте. Поэтому достаточно сохранности небольшого участка первичного сенсорного поля, чтобы способность к восприятию почти полностью сохранилась. Вторичные поля получают проекции от органов чувств через дополнительные переключения в подкорке, что позволяет производить более сложный анализ того или иного образа. Наконец, третичные поля, или ассоциативные зоны, получают информацию от неспецифических подкорковых ядер, в которых суммируется информация от нескольких органов чувств, что позволяет анализировать и интегрировать тот или иной объект в ещё более абстрагированной и обобщённой форме. Эти области называются также зонами перекрытия анализаторов. Первичные и отчасти вторичные поля — возможный субстрат первой сигнальной системы, а третичные зоны (ассоциативные) — второй сигнальной системы, специфичной для человека (И. П. Павлов). Эти межанализаторные структуры определяют сложные формы мозговой деятельности, включающие и профессиональные навыки (нижнетеменная область), и мышление, планирование и целенаправленность действий (лобная область), и письменную и устную речь (нижняя лобная подобласть, височная, височно-теменно-затылочная и нижнетеменная области). Основные представители первичных зон в затылочной области — поле 17, где спроецирована сетчатка, в височной — поле 41, где спроецирован Кортиев орган, в прецентральной области — поле 4, где осуществляется проекция проприорецепторов в соответствии с расположением мускулатуры, в постцентральной — поля 3 и 1, где спроецированы экстерорецепторы в соответствии с их распределением в коже. Вторичные зоны представлены полями 8 и 6 (двигательный анализатор), 5 и 7 (кожный анализатор), 18 и 19 (зрительный анализатор), 22 (слуховой анализатор). Третичные зоны представлены обширными участками лобной области (поля 9, 10, 45, 44 и 46), нижнетеменной (поля 40 и 39), височно-теменно-затылочной (поле 37).

Корковые структуры играют первостепенную роль в обучении животных и человека. Однако образование некоторых простых условных рефлексов, главным образом с внутренних органов, может быть обеспечено подкорковыми механизмами. Эти рефлексы могут образовываться и на низших уровнях развития, когда ещё нет коры. Сложные условные рефлексы, лежащие в основе целостных актов поведения, требуют сохранности корковых структур и участия не только первичных зон корковых концов анализаторов, но и ассоциативных — третичных зон. Корковые структуры имеют прямое отношение и к механизмам памяти. Электрораздражение отдельных областей коры (например, височной) вызывает у людей сложные картины воспоминаний.

Характерная особенность деятельности коры — её спонтанная электрическая активность, регистрируемая в виде электроэнцефалограммы (ЭЭГ). В целом кора и её нейроны обладают ритмической активностью, которая отражает происходящие в них биохимические и биофизические процессы. Эта активность имеет разнообразную амплитуду и частоту (от 1 до 60 гц) и изменяется под влиянием различных факторов.

Читайте также:  Носогубные морщины в 30 лет

Ритмическая активность коры нерегулярна, однако можно по частоте потенциалов выделить несколько разных типов её (альфа-, бета-, дельта- и тета-ритмы). ЭЭГ претерпевает характерные изменения при многих физиологических и патологических состояниях (различных фазах сна, при опухолях, судорожных припадках и т. и.). Ритм, т. е. частота, и амплитуда биоэлектрических потенциалов коры задаются подкорковыми структурами, которые синхронизируют работу групп корковых нейронов, что и создаёт условия для их согласованных разрядов. Этот ритм связан с апикальными (верхушечными) дендритами пирамидных клеток. На ритмическую деятельность коры накладываются влияния, идущие от органов чувств. Так, вспышка света, щелчок или прикосновение к коже вызывают в соответствующих зонах т. н. первичный ответ, состоящий из ряда позитивных волн (отклонение электронного луча на экране осциллографа вниз) и негативной волны (отклонение луча вверх). Эти волны отражают деятельность структур данного участка коры и меняются в её различных слоях.

Филогенез и онтогенез коры. Кора — продукт длительного эволюционного развития, в процессе которого сначала появляется древняя кора, возникающая в связи с развитием обонятельного анализатора у рыб. С выходом животных из воды на сушу начинает интенсивно развиваться т. н. плащевидная, полностью обособленная от подкорки часть коры, которая состоит из старой и новой коры. Становление этих структур в процессе приспособления к сложным и разнообразным условиям наземного существования связано (совершенствованием и взаимодействием различных воспринимающих и двигательных систем. У земноводных кора представлена древней и зачатком старой коры, у пресмыкающихся хорошо развиты древняя и старая кора и появляется зачаток новой коры. Наибольшего развития новая кора достигает у млекопитающих, а среди них у приматов (обезьяны и человек), хоботных (слоны) и китообразных (дельфины, киты). В связи с неравномерностью роста отдельных структур новой коры её поверхность становится складчатой, покрываясь бороздами и извилинами. Совершенствование коры конечного мозга у млекопитающих неразрывно связано с эволюцией всех отделов центральной нервной системы. Этот процесс сопровождается интенсивным ростом прямых и обратных связей, соединяющих корковые и подкорковые структуры. Т. о., на более высоких этапах эволюции функции подкорковых образований начинают контролироваться корковыми структурами. Данное явление получило название кортиколизации функций. В результате кортиколизации ствол мозга образует с корковыми структурами единый комплекс, а повреждение коры на высших этапах эволюции приводит к нарушению жизненно важных функций организма. Наибольшие изменения и увеличение в процессе эволюции новой коры претерпевают ассоциативные зоны, в то время как первичные, сенсорные поля уменьшаются по относительной величине. Разрастание новой коры приводит к вытеснению старой и древней на нижнюю и срединную поверхности мозга.

Корковая пластинка появляется в процессе внутриутробного развития человека сравнительно рано — на 2-м месяце. Раньше всего выделяются нижние слои коры (VI—VII), затем — более высоко расположенные (V, IV, III и II; см. рис. 1). К 6 месяцам у эмбриона уже имеются все цитоархитектонические поля коры, свойственные взрослому человеку. После рождения в росте коры можно выделить три переломных этапа: на 2—3-м месяце жизни, в 2,5—3 года и в 7 лет. К последнему сроку цитоархитектоника коры полностью сформирована, хотя тела нейронов продолжают увеличиваться до 18 лет. Корковые зоны анализаторов завершают своё развитие раньше, и степень их увеличения меньше, чем у вторичных и третичных зон. Отмечается большое разнообразие в сроках созревания корковых структур у разных индивидуумов, что совпадает с разнообразием сроков созревания функциональных особенностей коры. Т. о., индивидуальное (онтогенез) и историческое (филогенез) развитие коры характеризуется сходными закономерностями.

Лит.: Орбели Л. А., Вопросы высшей нервной деятельности, М.— Л., 1949; Цитоархитектоника коры большого мозга человека. Сб. ст., М., 1949; Филимонов И. Н., Сравнительная анатомия коры большого мозга млекопитающих, М., 1949; Павлов И. П., Двадцатилетний опыт объективного изучения высшей нервной деятельности животных, Полн. собр. соч., 2 изд., т. 3, кн. 1—2, М., 1951; Брейзье М., Электрическая активность нервной системы, пер. с англ., М., 1955; Сепп Е. К., История развития нервной системы позвоночных, 2 изд., М., 1959; Лурия А. Р., Высшие корковые функции человека и их нарушения при локальных поражениях мозга, М., 1962; Воронин Л. Г., Курс лекций по физиологии высшей нервной деятельности, М., 1965; Поляков Г. И., О принципах нейронной организации мозга, М., 1965; Корковая регуляция деятельности подкорковых образований головного мозга. Сб. ст., Тб., 1968; Анохин П. К., Биология и нейрофизиология условного рефлекса, М., 1968; Беритов И. С., Структура и функции коры большого мозга, М., 1969.

Л. Г. Воронин.

Рис. 3. Карта цитоархитектонических полей коры головного мозга человека: А — наружная поверхность полушария, Б — внутренняя поверхность полушария. Номерами и различной штриховкой обозначены цитоархитектонические поля коры.

Рис. 4. Представительство чувствительных функций тела в задней центральной извилине (А) и двигательных функций — в передней центральной извилине (Б). А: 1 — половые органы; 2 — пальцы; 3 — ступня; 4 — голень; 5 — бедро; 6 — туловище; 7 — шея; 8 — голова; 9 — плечо; 10 — рука; 11 — локоть; 12 — предплечье; 13 — запястье; 14 — кисть; 15 — мизинец; 16 — безымянный палец; 17 — средний палец; 18 — указательный палец; 19 — большой палец; 20 — глаз; 21 — нос; 22 — лицо; 23 — верхняя губа; 24 — губы; 25 — нижняя губа; 26 — зубы, дёсны и челюсть; 27 — язык; 28 — глотка; 29 — внутренние органы. Б: 1 — пальцы; 2 — лодыжка; 3 — колено; 4 — бедро; 5 — туловище; 6 — плечо; 7 — локоть; 8 — запястье; 9 — кисть; 10 — мизинец; 11 — безымянный палец; 12 — средний палец; 13 — указательный палец; 14 — большой палец; 15 — шея; 16 — бровь; 17 — веко и глазное яблоко; 18 — лицо; 19 — губы; 20 — челюсть; 21 — язык; 22 — глотание. Размеры частей тела, изображенного на рисунке, соответствуют представительству двигательных и чувствительных функций организма в передней и задней центральных извилинах коры.

Рис. 1. Схема строения коры головного мозга человека: I — зональный слой, II — наружный зернистый слой, III — пирамидный слой, IV — внутренний зернистый слой, V — ганглионарный слой, VI — слой треугольных клеток, VII — слой веретеновидных клеток. А — нейронное строение, Б — цитоархитектоника, В — волоконная структура.

Рис. 2. Электронномикроскопическое строение пирамидной клетки коры головного мозга белой крысы: 1 — ядро; 2 — ядрышко; 3 — канальцы эндоплазматической сети; 4 — комплекс Гольджи; 5 — синапсы; 6 — митохондрии.

Ссылка на основную публикацию
Фрустрирование
Фрустрация – это психическое состояние, для которого характерны такие проявления как неудача, обман, тщетное ожидание, расстройство замыслов. Фрустрация возникает по...
Фосфалюгель срок годности
Инструкция по применению: Цены в интернет-аптеках: Фосфалюгель – это антацидный препарат, оказывающий также обволакивающее и адсорбирующее действие. В состав препарата...
Фосфатидилэтаноламин формула
Фосфолип и ды, фосфатиды, сложные липиды, отличительным признаком которых является присутствие в молекулах остатка фосфорной кислоты. В состав Ф. входят...
Фсг и лг как нормализовать
Соотношение ЛГ и ФСГ позволяет узнать о состоянии здоровья женской половой системы. Фолликулостимулирующий гормон и лютеотропин отвечают за выработку женских...
Adblock detector